Корзина
Грузовой сервис (замена сцепления, ремонт сцепления)
Контакты
ООО"АВТОДОК"
Наличие документов
Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или индивидуального предпринимателя.
+7495649-90-10Запчасти
+7915206-35-32Запчасти
+7916498-44-79Строительная техника
+7495649-16-51Автосервис
Алексей Лукашин
РоссияМоскваЛюберецкий район, деревня Машково
394252434autodk.ru
Карта
Карта

Грузовой сервис (замена сцепления, ремонт сцепления)

Грузовой сервис (замена сцепления, ремонт сцепления)

Замена сцепления, ремонт сцепления: замена корзины сцепления, замена диска сцепления, замена выжимного подшипника на грузовиках Man, Mercedes, Iveco, Renault, Volvo, Scania, Daf.

1) Замена сцепления

Существует много различных типов сцепления, но большинство основано на одном или нескольких фрикционных дисках, плотно сжатых друг с другом или с маховиком пружинами. Фрикционный материал очень похож на используемый в тормозных колодках и раньше почти всегда содержал асбест, в последнее время используются безасбестовые материалы. Плавность включения и выключения передачи обеспечивается проскальзыванием постоянно вращающегося ведущего диска, присоединенного к валу двигателя, относительно ведомого диска, соединенного через шлиц с коробкой передач.

Усилие от педали сцепления передается на механизм путем гидравлического привода или троса. Выжимание педали сцепления разжимает диски сцепления, в итоге оставляя между ними свободное пространство, а отпускание педали приводит к плотному сжатию ведущего и ведомого дисков. Почти все стандартные типы сцепления содержат пружины демпфера крутильных колебаний (видны на снимке), служащие для выравнивания небольших постоянных колебаний момента, неизбежно возникающих при передаче его шестернями коробки передач.
Классификация

По виду энергии различают механические, гидравлические и электромагнитные муфты сцепления. Наиболее распространённые механические муфты сцепления подразделяют:
По виду трения – на сухие и работающие в масле (мокрые).
По режиму включения – постоянно замкнутые и непостоянно замкнутые.
По числу ведомых дисков – одно- , двух- и многодисковые.
По типу и расположению нажимных пружин – с расположением пружин по периферии нажимного диска и с центральной диафрагменной пружиной.

По способу управления – с механическим, гидравлическим, электрическим или комбинированным приводом (например, гидромеханическим).

Устройство однодискового сцепления (на примере сцепления автомобиля Камаз 4308)
Устройство:
Маховик.
Нажимной диск.
Ведомый диск.
Первичный вал коробки передач.
Рычаги выключения.
Опорные вилки рычагов.
Картер.
Выжимной подшипник с муфтой выключения сцепления.
Пружины.
Вилка выключения сцепления.
Кожух сцепления.
Педаль с приводом сцепления.
Регулировочные гайки.
ПГУ
При нажатии на педаль вал поворачивается и через рычаги и тягу действует на вилку выключения сцепления, а она – на муфту выключения сцепления с выжимным подшипником. Муфта с подшипником перемещается и нажимает на внутренние концы рычагов, которые отводят своими наружными концами нажимной диск от ведомого диска. При этом нажимные пружины сжимаются – сцепление выключено, и крутящий момент от двигателя к трансмиссии не передаётся. После отпускания педали муфта выключения сцепления с подшипником возвращаются в исходное положение под действием пружин. Под действием нажимных пружин нажимной диск прижимается к маховику – сцепление включено, крутящий момент передаётся от двигателя к коробке передач. Плавную передачу крутящего момента при включении сцепления обеспечивают демпферные пружины, вмонтированные в ведомый диск.
Устройство двухдискового сцепления (на примере сцепления трактора Т-150К)
Общее устройство:
Маховик.
2 ведомых диска.
Промежуточный ведущий диск.
Нажимной ведущий диск.
Нажимные пружины.
Кожух.
Вилки рычагов.
Рычаги выключения сцепления.
Выжимной подшипник.
Вилка выключения сцепления.
Отжимные пружины.
Привод сцепления с пневматическим усилителем.
Принцип действия:
При нажатии нажимным подшипником на рычаги они оттягивают нажимной диск. Нажимной диск отходит от первого ведомого и отпускает отжимные пружины. Они отпускают промежуточный ведущий диск, а он отходит за счёт других отжимных пружин от второго фрикционного, настолько же, насколько нажимной отошёл от первого фрикционного. При обратном движении отжимные пружины способствуют равномерному прижатию промежуточного диска ко второму ведомому и нажимного – к первому ведомому.

Привод сцепления с пневматическим усилителем – предназначен для уменьшения усилия, прилагаемого на педаль выключения сцепления. Устройство: педаль, тяга, золотник (клапан управления), шланги, пневмокамера, рычаги, тормозок, первичный вал с барабаном тормоска. Принцип действия: При отпущенной педали впускной клапан золотника закрыт, а выпускной открыт. При нажатии на педаль усилие через тягу и золотник передаётся на вилку выключения сцепления. В это время в золотнике открывается впускной клапан и закрывается выпускной – корпус золотника надвигается на выпускной клапан, выпускной клапан прижимается к впускному и закрывается, а впускной этим движением открывается. Воздух через впускной клапан поступает в пневмокамеру, она за счёт давления помогает нажать вилку выключения сцепления.
Мокрое сцепление

Мокрое сцепление погружено в охлаждающую смазывающую жидкость, которая также сохраняет поверхности чистыми, улучшает производительность и увеличивает срок службы.
Специальные виды сцепления

Для высоких нагрузок, таких как грузовые и спортивные автомобили, применяется также керамическое сцепление с высоким коэффициентом трения, однако оно «схватывает» резко, поэтому непригодно для использования в стандартных автомобилях.
Сцепление в автоматических коробках передач (АКПП)

В классическом виде сцепление в гидромеханических и вариаторных автоматических коробках передач отсутствует и присутствует только в роботизированных трансмиссиях и кулачковых АКПП.

В роботизированных коробках передач (МТА) выжимают сцепление и переключают передачи электроприводы, при этом, для большей плавности переключения существуют роботизированные коробки передач с двумя сцеплениями, работающими по очереди (одно сцепление в работе, другое, со следующей передачей, наготове).

В кулачковых коробках, используемых на спортивных автомобилях, педаль сцепления используется только при старте, далее переключение передач происходит без использования педали.

 

2) ПГУ сцепления (рабочий цилиндр сцепления) замена

Сервомастер, переборка. Включая замену клапанов, уплотнительных колец и сальников, а также внутреннюю и наружную чистку техническим спиртом.

При замене ПГУ, на грузовых автомобилях, необходимо производить проверку рабочего хода штока ПГУ, для исключения возможности подтекания рабочей жидкости из ПГУ, которая может наблюдаться в результате неправильной регулировки привода сцепления.

Для определения рабочего хода штока ПГУ необходимо оттянуть шток ПГУ от рычага, отвести его в сторону и дать возможность полностью выйти из корпуса. Затем повернуть рукой рычаг сцепления в рабочем направлении (т.е. от ПГУ) чтобы выбрать все зазоры в приводе, теперь надо замерить расстояние от конца штока до поверхности рычага сцепления, на которой расположена цековка под шток ПГУ. Если размер более 50 мм – регулировку рабочего хода штока ПГУ производить не надо, а если менее 50 мм – то необходимо провести следующие операции: Снять рычаг с поворотного вала и установить на один шлиц ближе к корпусу ПГУ. Затем установить шток ПГУ в рычаг привода сцепления.

 

3) Гидравлический подшипник сцепления, замена

Гидравлические и пневматические подшипники — это подшипники, в которых непосредственную нагрузку от вала воспринимает тонкий слой жидкости или газа.

Гидравлические и пневматические подшипники часто используются при высоких нагрузках, высоких скоростях и при необходимости обеспечить точную посадку вала, когда обычные шарикоподшипники создают слишком большую вибрацию, слишком большой шум или не удовлетворяют условиям компактности оборудования или условиям долговечности. Они всё чаще и чаще используются вследствие снижающейся стоимости. Например, компьютерные жёсткие диски, у которых вал электродвигателя посажен на гидравлические подшипники, работают тише, и они дешевле, чем те же диски, содержащие шарикоподшипники.

Принцип действия
У гидростатического подшипника имеются две поверхности, между которыми имеется зазор, поддерживаемый за счёт силы давления жидкости, нагнетаемой через дроссельное отверстие. Если зазор между поверхностями уменьшается, то возрастает сопротивление потоку жидкости, истекающему наружу. Как следствие, возрастает давление жидкости между поверхностями, и величина зазора восстанавливается. За счёт того, что поверхности деталей в подшипнике не соприкасаются, коэффициент трения остаётся очень низким (может достигать значений 10(-7)) Эти подшипники в общем случае могут быть разделены на два типа:
гидродинамические и газодинамические;
гидростатические.
В гидростатических подшипниках высокое давление жидкости поддерживается внешним насосом. Жидкостью в них служит обычно масло или вода.
В гидродинамических подшипниках при вращении вала на больших скоростях жидкость увлекается валом в пространство между цапфой и валом, и таким образом осуществляется самосмазывание.
Поскольку гидростатические подшипники для своей работы требуют нагнетания жидкости от внешнего насоса, то энергия, подводимая к насосу, для системы в целом является потерянной энергией. Однако в отсутствии насоса эта энергия расходовалась бы на преодоление сил трения.
В гидродинамических подшипниках жидкость засасывается внутрь подшипника движением вала, и нагнетается под вал или вокруг него также движением вала. Вследствие этого при небольших скоростях вращения вала (в том числе, в момент старта и торможения) слой жидкости под валом имеет недостаточную толщину, а это приводит к возрастанию сил трения. Если такие режимы случаются достаточно часто, то подшипник имеет меньший срок службы, и в нём происходят большие потери энергии. Иногда для предотвращения указанных проблем в гидродинамических подшипниках используют либо вторичный подшипник, либо внешний насос, которые включаются в работу в момент запуска или торможения.
Преимущества
Гидравлические подшипники дешевле обычных подшипников при одинаковых нагрузках. Гидравлические и пневматические подшипники достаточно просты по конструкции. В противоположность этому, подшипники качения содержат в себе ролики или шарики, имеющие сложную форму, и требующие высокой точности изготовления. Гидростатические и многие пневматические подшипники более сложны и дороги, чем гидродинамические, вследствие наличия насоса.
Большинство гидравлических и пневматических подшипников требуют небольших затрат на техническое обслуживание, или не требуют их вовсе. Кроме того, у них практически неограниченный срок службы. Обычные подшипники качения имеют более короткий срок службы и требуют регулярного технического обслуживания.
Гидравлические и пневматические подшипники, в общем, имеют очень низкие коэффициенты трения – намного ниже, чем у механических подшипников. Основной источник трения – это вязкость жидкости или газа. Поскольку у газа вязкость ниже, чем у жидкости, то газостатические подшипники относятся к числу подшипников с наименьшими коэффициентами трения. Однако, чем меньше вязкость жидкости, тем выше утечки, что требует дополнительных затрат на нагнетание жидкости (или газа) в подшипник. Такие подшипники также требуют применения уплотнений, и чем лучше уплотнение, тем выше силы трения.
При высоких нагрузках зазор между поверхностями в гидравлических подшипниках изменяется меньше, чем в механических подшипниках. Можно считать, что «жёсткость подшипника» является простой функцией среднего давления жидкости и площади поверхностей подшипника. На практике, когда нагрузка на вал велика, и зазор между поверхностями подшипника уменьшается, давление жидкости под валом увеличивается, сила сопротивления жидкости сильно возрастает, и таким образом поддерживается наличие зазора в подшипнике.
Однако, в подшипниках с небольшой нагрузкой, таких как подшипники в приводах дисков, жёсткость подшипников качения составляет порядка 107 МН/м, в то время как в гидравлических подшипниках ~106 МН/м. По этой причине, для повышения жёсткости, некоторые гидравлические подшипники, в частности, гидростатические подшипники, конструируют таким образом, чтобы они имели предварительную нагрузку.
Вследствие принципа своей работы, гидравлические подшипники часто имеют значительную демпфирующую способность.
Очень трудно изготовить идеально круглые и гладкие поверхности в подшипниках качения. В механических подшипниках на высоких скоростях вращения поверхности деформируются вследствие центростремительной силы. В противоположность этому, гидравлические и пневматические подшипники являются самокорректирующимися по отношению к малым отклонениям в форме деталей подшипника.
Гидравлические и пневматические подшипники как правило работают тише и создают меньшие вибрации, чем подшипники качения (вследствие более равномерно распределённых сил трения). Например, жёсткие диски, изготовленные с использованием гидравлических (пневматических) подшипников, имеют уровень шума подшипников/двигателей порядка 20-24 дБ, что не намного больше, чем фоновый шум в закрытой комнате. Диски с подшипниками качения как минимум на 4 дБ более шумные.
Недостатки
В этих подшипниках обычно рассеивается больше энергии, чем в шарикоподшипниках.
Рассеивание энергии в подшипниках, а также жёсткость и их демпфирующие свойства очень сильно зависят от температуры, что усложняет разработку подшипников и их работу в широком температурном диапазоне.
Гидравлические и пневматические подшипники могут внезапно клинить или разрушаться в критических ситуациях. Шарикоподшипники выходят из строя более постепенно, и этот процесс сопровождается акустическими симптомами.
Дисбаланс вала и других деталей в гидравлических и пневматических подшипниках больше аналогичного дисбаланса в шарикоподшипниках, что приводит к возникновению более сильной прецессии, ведущей к сокращению срока службы и подшипника и ухудшению его показателей качества.
Ещё одним недостатком гидравлических и пневматических подшипников являются утечки жидкости или газа наружу подшипника; удержание жидкости или газа внутри подшипника может представлять значительные трудности.
Гидравлические подшипники, в которых используется масло, не применяются в тех случаях, когда утечки масла в окружающую среду недопустимы, или когда их обслуживание экономически нецелесообразно.
Цапфы гидравлических и пневматических подшипников часто устанавливают по две и по три друг за другом во избежание утечек с одной из сторон.
Область применения гидродинамических подшипников
Гидродинамические подшипники получили наиболее широкое применение в машинах, благодаря простоте конструкции, хотя в периоды пуска и остановки, на малых оборотах они работают в условиях граничного смазывания, или даже «сухого» трения.
В прецизионных современных станках, работающих при небольших нагрузках, особенно в шлифовальных
Использование гидродинамических подшипников скольжения вместо подшипников качения в компьютерных жёстких дисках даёт возможность регулировать скорость вращения шпинделей в широком диапазоне, уменьшить шум и влияние вибраций на работу устройств, тем самым позволяя увеличить скорость передачи данных и обеспечить сохранность записанной информации, а также – создать более компактные жёсткие диски (0,8-дюймовые). Однако имеется и ряд недостатков: высокие потери на трение и, как следствие, пониженный коэффициент полезного действия (0,95… 0,98); необходимость в непрерывной смазке; неравномерный износ подшипника и цапфы; использование для изготовления подшипников дорогих материалов.
В насосах, например, в циркуляционном насосе реактора РБМК-1000.
В вентиляторах для охлаждения персонального компьютера. Использование такого вида подшипников позволяет уменьшить шум и повысить эффективность системы охлаждения. Даже на начальном этапе гидродинамический подшипник работает тише, чем подшипник скольжения. После окончания определённого периода эксплуатации он не теряет свои акустические свойства и не становится более шумным, в отличие от других подшипников.

 

4) Выжимной подшипник сцепления, замена

Подшипник сцепления меняется при снятой кпп (коробки передач)

 

5) Педаль сцепления

Ремонт узла цилиндра сцепления, замена

 

6) Датчик педали сцепления

Замена датчика педали

 

7) Картер сцепления

Ка́ртер — неподвижная деталь машин или механизмов (двигателя, редуктора, коробки передач и т. п.), обычно коробчатого сечения, предназначенная для опоры рабочих деталей и их защиты

 

8) Диск сцепления ведомый

Ведомый диск / стальной, с приклепанными с двух сторон (каждая отдельно) фрикционными накладками.

 

9) Диск сцепления нажимной (корзина сцепления)

Нажимной диск отлит иа серого чугуна. Одна сторона диска, которой он прижимается к фрикционной накладке ведомого диска, шлифована. На другой стороне имеются 16 бобышек для центровки нажимных пружин. G этой же стороны на диске имеются пазы для установки рычагов,

Ведомый диск / стальной, с приклепанными с двух сторон (каждая отдельно) фрикционными накладками 8 ( 3.2). Для повышения упругости и возможности правки диска при сборке в нем сделаны радиальные прорези. Для уменьшения динамических нагрузок в трансмиссии, а также частоты собственных колебаний трансмиссии ведомый диск снабжен гасителем крутильных колебаний (демпфером). Упругим элементом гасителя являются восемь тангенциальных пружин 2. Каждая пружина вместе с двумя опорными пластинами 3 помещается в прямоугольных окнах, сделанных в ведомом диске и дисках 4 гасителя колебаний,

которые крепятся к фланцу ступицы 5 ведомого диска заклепками 6.

Фрикционным элементом гасителя крутильных колебаний является дисковая муфта с трением без смазочного материала сталей. Пара трения состоит из упругих дисков 4 фрикционных накладок 7. Фрикционные пары демпфера поглощают низкочастотные колебания, возникающие в силовой передаче, а пружины демпфера — высокочастотные крутильные колебания.

 

10) Гидротрансформатор

Гидродинамический трансформатор (гидротрансформатор, ГДТ) является частью гидромеханической трансмиссии, которая на современных автомобилях имеет электронное управление гидравликой и в обиходе называется автоматической.

Первый гидротрансформатор был запатентован в 1902 году Г. Феттингером и установлен через пять лет на быстроходном судне. В автомобилестроении это устройство первой применила в 1928 году шведская фирма «Лисхольм-Смит» для городских автобусов. В 1940 году гидротрансформатором стали оснащаться Oldsmobile, а затем и Cadillac.

Buick Roadmaster в 1947 году стал первым серийным легковым автомобилем с гидротрансформатором.
ГДТ находится между двигателем и автоматической коробкой перемены передач (АКПП), которая принципиально отличается устройством от простых механических. Он выполняет без вмешательства водителя две функции. Первая – функция сцепления, т. е. обеспечение передачи крутящего момента двигателя на АКПП. Вторую можно назвать функцией «дополнительной бесступенчатой коробки передач». Это образное выражение можно применить, исходя из особенностей работы гидротрансформатора, который, изменяя передаваемый им крутящий момент, позволяет увеличивать передаточные числа АКПП (см. «Работа ГДТ на автомобиле»).
Устройство ГДТ

Схематично ГДТ (см. рисунок) можно представить в виде трех лопастных колес (насосное, турбинное и колесо реактора), вращающихся соосно и находящихся в одном корпусе (фото 1), заполненном рабочей жидкостью.
Насосное колесо (насос) жестко соединено с корпусом ГДТ, который приводится во вращение коленчатым валом двигателя.
Турбинное колесо (турбина) имеет шлицевое соединение с первичным валом коробки передач.
Колесо реактора (реактор) соединено с корпусом коробки передач через муфту свободного хода, что позволяет ему быть неподвижным или вращаться относительно насоса и турбины в зависимости от режима работы ГДТ.
Рабочая жидкость – жидкость для гидромеханических трансмиссий, нагнетаемая специальным насосом (не путать с насосным колесом) во внутреннюю полость корпуса ГДТ.
Принцип работы ГДТ

Коленчатый вал двигателя вращает корпус гидротрансформатора, который жестко связан с маховиком. Насосное колесо, конструктивно объединено с его корпусом и всегда имеет число оборотов, равное оборотам двигателя.
При вращении коленчатого вала насосное колесо начинает вращаться вместе с жидкостью, полностью заполняющей корпус ГДТ. Лопасти насосного колеса устремляют рабочую жидкость на лопасти турбины. Вслед за движением насосного колеса, под действием жидкости начинает двигаться турбинное. При малом числе оборотов происходит отставание вращения турбинного колеса от насосного. По мере увеличения числа оборотов проскальзывание уменьшается, к.п.д. ГДТ возрастает.
Между насосным и турбинным колесами расположен реактор. На современных моделях ГДТ он устанавливается на обгонной муфте, которая позволяет расклинивать его (см. устройство) и тем самым еще больше увеличивать к.п.д ГДТ.
Жидкость, от насосного колеса попадая через лопасти турбины на реактор, может передать больший момент, чем развивает двигатель. Этот эффект и определил название гидротрансформатора, т.е. он трансформирует (передает, усиливает) крутящий момент. Неподвижный реактор нужен только до тех пор, пока скорость вращения турбины отстает от скорости вращения насосного колеса на 15-25%. При выравнивании скоростей колес реактор становится помехой и снижает к.п.д. ГДТ, поэтому муфта свободного хода разблокирует его и он будет вращаться.
Работа ГДТ на автомобиле

Сложные гидродинамические процессы, протекающие внутри ГДТ, на автомобиле (упрощенно) проявляют себя следующим образом.
Водитель переводит рычаг управления АКПП в положение движения. Включается соответствующая передача (планетарный ряд), имеющая фиксированное передаточное отношение.
До начала движения и в момент троганья происходит интенсивное взаимное проскальзывание насосного и турбинного колес гидротрансформатора. Эта его конструктивная особенность обеспечивает бесступенчатое увеличение передаточного отношения между двигателем и первичным валом АКПП (и, соответственно, включенной в данной момент передачей) в зависимости от интенсивности разгона и дорожных условий. Режим установившего движения автомобиля сопровождается выравниванием скоростей вращения насоса и турбины и снижения общего передаточного отношения ГДТ и АКПП. Точно так же ГДТ «отслеживает» изменение условий движения на других передачах. Поэтому его иногда условно называют «дополнительной бесступенчатой коробкой передач». При работе АКПП гидротрансформатор исключает ударные нагрузки в момент переключения передач и «сглаживает» разницу их передаточных отношений.
Он обеспечивает, в определенных пределах, приспособляемость двигателя к изменению дорожных условий. На современных моделях гидротрансформаторов при установившемся движении автомобиля на повышенных передачах в АКПП (на некоторых даже на I и II) происходит полная механическая блокировка ГДТ, и он работает как обычное «сухое» сцепление, исключающее в нем потерю мощности.
При движении автомобиля детали ГДТ испытывают высокие гидравлическую и тепловую нагрузки. Последняя возникает, когда реактор не вращается. Это происходит из-за характера движения жидкости и ее внутреннего трения. Поэтому рабочая жидкость дополнительно охлаждается специальным радиатором, расположенным в передней части автомобиля вместе с радиатором охлаждения двигателя или внутри него. Неисправности радиаторов могут привести к попаданию охлаждающей жидкости в трансмиссионную, что выводит из строя ГДТ и автоматическую коробку передач. Автоматическая трансмиссия оказывает на двигатель дополнительную тепловую нагрузку, перегрев ее может привести к перегреву двигателя и наоборот.
Движение автомобиля с исправными гидротрансформатором и АКПП отличается плавностью хода и оптимальной динамикой разгона.
Ремонт ГДТ Ресурс гидротрансформатора сопоставим с ресурсом двигателя автомобиля, но, как любой агрегат, он может выйти из строя раньше выработки расчетного ресурса. При появлении признаков неисправности (см. таблицу) не стоит затягивать с обращением к специалистам, так как даже незначительное повреждение одной детали (фото 3) вызывает со временем более серьезные у других. Система циркуляции рабочей жидкости у гидротрансформатора и коробки передач общая. Продукты износа деталей обоих агрегатов взаимно влияют на работу друг друга, поэтому при ремонте коробки желательно (а иногда необходимо) ремонтировать ГДТ. Ремонт ГДТ заключается в дефектовке и замене вышедших из строя деталей после его разборки. Разборка осуществляется путем срезания сборочного сварного шва. Детали вскрытого гидротрансформатора показаны на фото 3. После сборки ГДТ его корпус сваривают, проверяют на герметичность и балансируют. Наиболее распространенные неисправности ГДТ и их возможные причины. Неисправность Возможная причина
Остановка автомобиля Срезание шлиц на турбинном колесе
При включении передачи слышен шуршащий шум, исчезающий при движении Износ упорного игольчатого подшипника между насосным колесом и реактором или турбинным колесом и крышкой ГДТ
Громкий металлический стук при включении передачи Выкрашивание, деформация и выпадение лопаток (фото 4)
Алюминиевая пудра на масляном щупе коробки передач Износ алюминиевой торцевой шайбы муфты свободного хода реактора
Запах плавящейся пластмассы Выход из строя деталей из полимерных материалов из-за перегрева ГДТ
Глохнет двигатель при включении передач Вышла из строя система управления, срабатывает блокировка ГДТ

 

10) Масло трансмисионное

Масло, замена. Включая фильтр

 

11) Цепь масляного насоса

Цепь, замена. Для масляного насоса

vkontakte facebook twitter
Предыдущие новости
× Войти

Или войти через социальные сети: